Механические и технологические свойства чугуна

Чугун является своеобразным композитным материалом, механические и эксплуатационные свойства которого зависят от характеристик металлической основы (прочность, пластичность, твердость и др.), а также формы, размеров, количества и распределения Графитовых включений. При этом решающее значение в ряде случаев Имеет либо графит, либо металлическая основа. Например, модуль упругости чугуна в решающей степени зависит от формы и величины графитовых включений, а твердость в основном определяется свойствами металлическое основы. Такие свойства, как ременное сопротивление разрыву, Ударная вязкость, длительная прочесть, зависят как от свойств металлической основы, так и от формы или размеров и количества графитовых включений. Свойства структурных составляющих металлической основы чугуна приведены в табл. 1.

Получение той или иной структуры чугуна в отливках зависит от многих факторов: химического состава чугуна, вида шихтовых материалов, технологии плавки и внепечной обработки металла, скорости кристаллизации и охлаждения расплава в форме, а следовательно, толщины стенки отливки, теплофизических свойств материала формы и др. Структуру металлической основы чугуна можно изменять также термической обработкой отливок, общие закономерности влияния которой аналогичны возникающим при термической обработке углеродистой стали, а особенности связаны с сопутствующими изменениями металлической основы процессами графитизации.

Среди элементов химического состава С и Si определяют формирование структуры чугуна, а при заданной технологии литья приведенный размер стенки отливки Rпр характеризует скорость ее охлаждения (Rпр — отношение площади сечения стенки к периметру). Тогда различная структура чугуна в отливках при литье в песчаную форму получается при.

C(Si + lg R_{п р}) = K

где К≤4,5 — для перлитно-цементной структуры;
К=4,5⁄6,0 для перлитно-графитной структуры;
К=10⁄14 для перлитно-ферритно-графитной структуры;
К≥14 для ферритно-графитной структуры.

Наряду с Si большое значение как графитизирующий элемент имеет Аl, который иногда частично или полностью заменяет Si. Это улучшает свойства чугуна, особенно пластичность. Наиболее благоприятное сочетание характеристик прочности, вязкости и пластичности достигается и алюминиевых чугунах при содержании в них Si≤1,0%.

По влиянию небольших добавок других элементов на структуру чугуна и, следовательно, свойства добавки можно разбить на три группы.

Первая группа элементов (Ni, Со, Сu) аналогично Si оказывает графитизирующее влияние, способствует размельчению выделений графита. Одновременно эти элементы стимулируют получение более дисперсных перлитных игольчатых и мартенситных структур даже при сравнительно медленном охлаждении.

Таблица 1. Свойства основных структурных составляющих чугуна
Структурные составляющие чугуна σв, МПа δ, % HB∗10-1, МПа
Феррит 250-400 30-50 110-140
Перлит 800-1000 15-20 200-260
Сорбит 1200-1400 10-15 240-300
Тростит 280-320
Бейнит 300-350
Мартенсит 1400-1800 350-550
Аустенит 400-800 40-60 140-160
Цементит 30-50 750-800
Фосфидная эвтектика 300-400
Графит 17-35 130-180

При легировании фаз металлической основы свойства их повышаются. Например феррит, легированный 2% Si, имеет σв = 600 МПа.

Вторая группа элементов (Сr, Мо, W, V и др.) в противоположность первой препятствует графитизации с интенсивностью, пропорциональной концентрации. При содержании, превышающем предел растворимости; их в цементите или феррите, они образуют специальные карбиды.

К третьей группе элементов можно отнести Ti, Zr, Се, Са, Mg, В и др. Эти элементы характеризуются высокой химической активностью, почти целиком расходуются на образование тугоплавких карбидов, сульфидов, оксидов, нитридов, которые могут служить зародышами в процессе последующей кристаллизации и повышать дисперсность металлической основы. Более того, элементы этой группы Alg, Са, Се и др. редкоземельные металлы (РЗМ) входят в состав лигатур для модифицирования чугуна с целью получения графита веринкулярной или шаровидной формы.

Влияние графитовых включений на различные эксплуатационные свойства чугуна также многообразно и не однозначно.

При нагружении чугуна графитовые включения, являясь «надрезами», снижают его прочность и пластичность. Это происходит, во-первых, вследствие некоторого уменьшения живого сечения металлической основы из-за полостей, занятых графитом, имеющим небольшую прочность на разрыв, и, во-вторых, что наиболее важно, из-за высокой концентрации напряжений, возникающей в местах графитовых включений, особенно при пластинчатой форме графита. Чем длиннее пластинки графита, тем больше коэффициент концентрации напряжений. Все это приводит к резкой локализации пластических деформации в металлической основе, исчерпанию пластичности материала в этих местах, развитию трещин и в итоге — к квазихрупкому разрушению материала при средних напряжениях и показателях пластичности, более низких, чем прочность и пластичность металлической основы чугуна.

Кроме того, из-за разного коэффициента термического расширения графита и металлической основы при охлаждении отливок в чугуне возникают структурные напряжения II рода, которые, постепенно возрастая, достигают предела упругости материала в местах концентрации напряжений (при пластинчатой форме графита). Поэтому дополнительная внешняя нагрузка любой ветчины вызывает необратимые пластические деформации в материале, и чугун с пластинчатым графитом в литом состоянии, по существу, не имеет предела упругости. Однако он может приобрести это свойство в результате «тренировки» различными нагрузками, приводящими к упрочнению металлической основы в местах концентрации напряжений. Этой же цели могут служить различные варианты термомеханической или термоциклической обработки, что особенно важно для высокоточных деталей прецизионных станков и других подобных машин.

Упрочнение металлической основы в местах концентрации напряжений происходит при естественном старении отливок из чугуна с пластинчатым графитом (вылеживании) даже при отсутствии напряжений I рода, из-за протекания релаксационных процессов высоких напряжений II рода. В результате возрастает сопротивляемость образованию пластических деформаций при нагружении небольшими нагрузками. Указанный процесс интенсифицируется при вылеживании отливок на воздухе, когда добавляется термо-циклическое воздействие изменений погодных условий.

Модуль упругости чугуна Е из-за графитовых включений ниже, чем у его металлической основы, так как образуются дополнительные обратимые деформации полостей, занятых графитом, особенно заметные при больших нагрузках. Поэтому значение Е уменьшается с увеличением нагрузки.

Все отмеченные явления становятся менее заметными при увеличении дисперсности пластинчатого графита до 100—200 мкм и особенно при его компактных формах (вермикулярный, шаровидный графит). Поэтому ковкий и высокопрочный чугуны при одинаковой структуре металлической основы имеют более высокую прочность, модуль упругости, пластичность; у них появляется предел упругости.

Наличие графитовых включений делает чугун, особенно с пластинчатым графитом, практически не чувствительным к надрезам, что позволяет конкурировать ему с более прочной сталью по сопротивлению усталости и пределу выносливости. Включения графита обеспечивают высокую износостойкость чугуна в условиях трения скольжения со смазкой и т. д.






Навигация
Болты
Винты, шпильки, штифты, прокладки
Пружины
Заклепки
Шпонки
Гайки
Резьба
Валы
Муфты
Подшипники
Виды соединений
Передачи
Материал
Дополнительные материалы
Госты метизов
Сварка
Мы в соцсетях
podshipniki.moscow применяемость подшипников
Сортовой металлопрокат: str-steel.ru в Москве с доставкой.