Жаростойкость чугуна

Жаростойкость характеризует работоспособность чугуна при повышенных н высоких температурах в условиях действия малых нагрузок, когда главной причиной разрушения отливок является образование окалины или трещин. Наблюдается также необратимое изменение размеров отливок, которое принято называть постом. Жаростойкость оценивается по окалиностойкость — увеличению массы отливки в г/(м2∗ч) и ростоустойчивости — уменьшению плотности чугуна или увеличению длины образца за 150 часов выдержки при соответствующей температуре. Для жаростойких чугунов при соответствующей температуре увеличение массы образца не должно превосходить 0,5 г/м2, а длины 0,2%. Рост чугуна возрастает с повышением температуры и продолжительности выдержки, увеличением числа циклов колебаний температуры (особенно при переходе через критический интервал) скорости изменения температуры и агрессивности среды (рис. 1, а). Причинами вызывающими рост чугуна, являются также графитизация и другие Фазовые превращения, протекающие с увеличением объема фаз, деление основного металла и легирующих элементов, растворение графита и порообразование, релаксация напряжений.

В наиболее неблагоприятных условиях например при циклическом изменении температуры в агрессивной среде необратимое увеличение объема может достигать 20, а иногда 50—100%. Характерными признаками роста являются резкое понижение механических свойств и образование сетки разгара на поверхности отливок.

Влияние содержания легирующих элементов на окисление (увеличение массы) (а) и линейный рост (б) чугуна при 1223—1273 К 261:
Рис. 1. Изменение объема (а) и рост чугуна (б) в зависимости от числа циклов нагрева до 900 °С: a — серый чугун с пластинчатым графитом; нагрев; 1 — в водороде; 2 — в вакууме; 3 — в атмосфере печных газов; 4 — в С02; б — чугуны с ферритной основой; 1 — марки СЧ состава 3,27—3,43% С; 2,19—2,23% Si; 0,47—0,68% Мn, 0,13—0,20% Р, до 0,15% S; 2 — марки ВЧ того же состава, кроме того, до 0,01% Si 0,05—0,077% Mg; 1,5-1,95% Ni

Измельчение и уменьшение количества графита и размера эвтектического зерна, замена перлита ферритом в структуре повышают окалиностойкость и ростоустойчивость чугунов марок СЧ. Этому способствуют уменьшение содержания С и Si, замена обычного чугуна модифицированным, низкое легирование Cr, Ni и другими элементами, Более высокой окалиностойкостыо и ростоустойчивостью обладает высокопрочный чугун (рис. 1, б). Ковкий чугун с типичным для него выделением углерода отжига занимает при одной и той же матрице промежуточное положение между чугунами марок.

На воздухе чугун марки СЧ сохраняет повышенную стойкость при температурах до 450—500 °С, а в атмосфере печных газов лишь до 350 °С, в атмосфере водяного пара не выше 300 °С. Явление роста в высокопрочном чугуне с шаровидным графитом (ВЧШГ) практически не наблюдается при температурах до 400—500 °С.

При более высоких температурах следует применять специальные легированные чугуны. Наиболее часто для повышения жаростойкости используют легирование Si, Al и Cr.

Влияние Si и Al на окалиностойкость и ростоустойчивость чугуна не однозначно (рис. 2). При небольших добавках этих элементов в обычный чугун с пластинчатым графитом рассматриваемые свойства ухудшаются. Даже незначительное количество Si в белых чугунах резко понижает их жаростойкость. Однако при достаточно высоком содержании Si и Al стойкость чугуна против окисления и роста резка повышается.

Благоприятные результаты действия высоких концентраций Si на окалииостой кость и ростоустойчивость связаны с получением стабильной структуры графит + кремнеферрит. По мере увеличения содержания Si критические точки располагаются при более высокой температуре. Так, при 6% Si точка Дс, располагается около 950 °С, а при 7% Si — около 1000 °С. Кремний, входя в твердый раствор, повышает температуру образования непрочной вюститной фазы (Fe3O4), т. е. увеличивает стойкость металлической основы против окисления.

Влияние А1 на жаростойкость чугуна проявляется прежде всего путем образования им защитных оксидных пленок. Алюминий повышает температуру возникновения вюститной фазы и способствует образованию оксидных пленок с шпииельиьш типом решетки (FeO∗Al2O3).

На уменьшение роста и окисления отливок хром влияет уже при небольших количествах (0,5—1,5%; рис. 2, а).Ввод хрома в таких количествах тормозит графитизацию эвтектоидного цементита, измельчает включения графита н повышает сопротивляемость окислению металлической основы вследствие повышения температуры образования вюститной фазы. Максимального уровня эти свойства достигают при Сг>15%. Большинство жаропрочных хромистых чугунов (>10% Сr) относятся к типу белых чугунов.

Влияние содержания легирующих элементов на окисление (увеличение массы) (а) и линейный рост (б) чугуна при 1223—1273 К 261:
Рис. 2. Влияние содержания легирующих элементов на окисление (увеличение массы) (а) и линейный рост (б) чугуна при 1223—1273 К 261:
1, 1′ — увеличение содержания Si в обычном и высокопрочном чугуне соответственно; 2, 2′ — увеличение содержания Al; 3 — увеличение содержания Сr

Таблица 1. Жаростойкость некоторых легированных чугунов (ГОСТ 7769-82)
Чугун Характеристика условий
Хромистые чугуны
ЧХ1 В воздушной среде до 500 °C
ЧХ2 То же, до 600 °C
ЧХ3 » до 650 °C
ЧХ16 » до 900 °C
ЧХ28 В расплавах солей до 900 °C, в газовых пределах до 1100 - 1150 °C
ЧХ32 То же
ЧХ28П В цинковых расплавах до 500 °C
Никелевые чугуны
ЧНМШ Термостойкость до 500 °C
ЧН19Х3Ш Жаростойкость до 600 °C
ЧН11Г7Ш То же
Кремнистые чугуны
ЧС5 В топочных и генераторных газах, в воздушной среде до 700 °C
ЧС5Ш То же, до 800 °C
ЧС13 В кислотах, кроме плавиковой и соляной, до 200 °C
ЧС15 То же
ЧС17 »
Алюминиевые чугуны
ЧЮХШ В атмосфере воздуха и печных газов до 650 °C
ЧЮ7Х2 То же, до 750 °C
ЧЮ6С5 » до 800 °C
ЧЮ22Ш В воздушной среде до 1000 - 1100 °C, повышенная в газовой среде, содержащей S, пары воды
ЧЮ30 В воздушной среде до 1100 °C

Х - хром; Н - никель; М - молибден; Г - марганец; С - кремний; Ю - алюминий; П - фосфор; Ш - чугун с шаровидным графитом.

Никель повышает жаростойкость даже при относительно небольших добавках (до 1,5-2,0). Однако это влияние ощутимо лишь в области относительно низких температур. Жаростойкость непрерывно повышается с ростом концентрации в них N4. Жаростойкими при 1220 К являются чугуны, содержащие не менее 25% Ni. При таких концентрациях никеля чугуны имеют однофазную аустенитную структуру металлической основы.

Наиболее эффективно для повышения жаростойкости и сохранения других свойств комплексное легирование, например, Сr и Ni, Сг и Cu, Si и А1 и др.






Навигация
Болты
Винты, шпильки, штифты, прокладки
Пружины
Заклепки
Шпонки
Гайки
Резьба
Валы
Муфты
Подшипники
Виды соединений
Передачи
Материал
Дополнительные материалы
Госты метизов
Сварка
Мы в соцсетях
podshipniki.moscow применяемость подшипников
Сортовой металлопрокат: str-steel.ru в Москве с доставкой.