Физические основы сварки.

Монолитность сварных соединений достигается обеспечением физико-химических и атомно-молекулярных связей между элементарными частицами соединяемых тел.

Элементарные связи удерживают каждый атом внутри кристалла симметрично направленными силами. На свободной поверхности тела атом неуравновешен вследствие отсутствия или ослабления связей с внешней стороны (рис. 1, а). Это явление увеличивает потенциальную энергию εп поверхностного слоя. При соединении тел требуется извне механическая или тепловая энергия εг для преодоления энергетического барьера (рис.1, б).

Элементарные связи сварных соединений
Рис. 1 - Энергетический барьер потенциальной энергии системы атомов у поверхности кристалла (а) и на границе твердой н жидкой фаз в начальный период их контактирования (б)

Внешняя механическая энергия деформации будет затрачена на преодоление сил отталкивания, возникающих между поверхностными атомами сближаемых тел. Когда расстояния между ними будут близки к межатомным, в решетке кристаллов возникают квантовые процессы взаимодействия электронных оболочек атомов. После этого общая энергия системы начнет снижаться до уровня, соответствующего энергии E0ε атомов в решетке целого кристалла, т. е. будет получено монолитное соединение.

Тепловая энергия, сообщенная поверхностным атомам при повышении температуры, увеличивает флуктуационную вероятность развития процессов электронного взаимодействия и облегчает процесс соединения.

Трехстадийность процесса сварки связана с тем, что ее (так же как и пайку) можно отнести к классу так называемых топохимнческих реакций. Последние на микроучастках отличаются двухстадийностью процесса образования прочных связей между атомами соединяемых веществ (рис. 2). В микрообъемах процесс сварки завершается третьей стадией — диффузией

 образования прочных связей между атомами соединяемых веществ
Рис. 2 - Кинетика изменения прочности соединения при быстром (1) и медленном (2) развитии физического контакта (А) и химического взаимодействии (Б) в зависимости от длительности сварки

На первой стадии А развивается физический контакт, т. е. осуществляется сближение соединяемых веществ на расстояния, требуемые для межатомного взаимодействия, а также происходит подготовка к взаимодействию. На второй стадии Б — стадии химического взаимодействия — заканчивается процесс образования прочного соединения на микроучастке.

Диффузионные процессы развиваются почти одновременно с прорастанием дислокаций при пластической деформации контактирующих поверхностей либо при наличии высокой температуры.

Практическое получение монолитных соединений осложнено двумя факторами:

  • свариваемые поверхности имеют микронеровности, поэтому при совмещении поверхностей контактирование возможно лишь в отдельных точках;
  • свариваемые поверхности имеют загрязнения, так как на любой поверхности твердого тела адсорбируются атомы внешней среды.

Для качественного соединения изделий необходимо обеспечить контакт на большей части стыкуемых поверхностей и активацию их.

Активация поверхностей состоит в том, что поверхностным атомам твердого тела сообщается некоторая энергия, необходимая для обрыва связей между атомами тела и атомами внешней среды, насыщающими их свободные связи; для повышения энергии поверхностных атомов до уровня энергетического карьера схватывания, т. е. для перевода их в активное состояние. Такая энергия активации может в общем случае быть сообщена в виде теплоты (термическая активация), упругопластической деформации (механическая активация), электронного облучения и других видов воздействия.

Определение процесса сварки целесообразно дать, исходя из анализа физико-химических особенностей получения соединений. В зоне сварки можно установить наличие двух основных физических явлений, связанных с термодинамически необратимым изменением формы энергии и состояния вещества (рис. 3): введения и преобразования энергии; движения (превращения) вещества.

Определение процесса сварки
Рис. 3 - Схема модель, поясняющая термодинамическое определение и классификацию процессов сварки: Г. ТМ. ЛМ — термические. термомеханические и прессово-механические процессе

Исходя из сказанного, можно дать следующее термодинамическое определение процесса сварки.

Сварка — это процесс получения монолитного соединения материалов за счет термодинамически необратимого превращения тепловой и механической энергии и вещества в стыке.

Склеивание, цементирование и другие соединительные процессы, обеспечивающие монолитность соединения, в отличие от сварки и пайки, как правило, не требуют специальных источников энергии. Они реализуются обычно только за счет введения (преобразования) вещества (клея, цемента и т. д.).

Кроме самого общего, термодинамического, возможны и другие определения сварки. Например, в технологическом аспекте, согласно ГОСТ 2601-84,

сварка — это процесс получения неразъемных соединений посредством установления межатомных связей между свариваемыми частями при их местном нагреве или пластическом деформировании, или совместном действии того и другого.






Навигация
Болты
Винты, шпильки, штифты, прокладки
Пружины
Заклепки
Шпонки
Гайки
Резьба
Валы
Муфты
Подшипники
Виды соединений
Передачи
Материал
Дополнительные материалы
Госты метизов
Сварка
Мы в соцсетях
podshipniki.moscow применяемость подшипников
Сортовой металлопрокат: str-steel.ru в Москве с доставкой.